Multivalued Maps and the Existence of Best Approximants

A. CARBONE

Dipartimento di Matematica, Universitá della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy

AND

G. CONTI

Istituto Matematico, Facoltá di Architettura, Universitá di Firenze, Piazza Brunelleschi, 50121 Firenze, Italy

Communicated by G. Nurnberger

Received November 1, 1989; revised March 12, 1990

Some existence of the best approximants in normed linear space is presented. A fixed point theorem for uppersemicontinuous multivalued maps with nonconvex values is used for this purpose. Previous results due to different authors are covered and extended through our method. © 1991 Academic Press, Inc.

Introduction

In [3] Ky Fan proved that for any continuous function f from a compact convex subset M of a normed linear space X into X there exists $x \in M$ such that

$$||x - f(x)|| = d(f(x), M).$$

Ky Fan's theorem has been of great importance in Nonlinear Analysis, Approximation Theory, Game Theory, and Minimax Theorems.

There have appeared several extensions of this theorem (see, e.g., [6-8]). In [6, 8] Ky Fan's theorem has been extended for a continuous onto and almost-affine (see definition below) map instead of the identity map.

The main tools used in those papers are fixed point theorems for suitable multivalued maps: the hypothesis of almost-affinity ensures that those multivalued maps have convex values.

In the present paper we obtain results for a wider class of maps including the almost-affine ones.

We obtain a multivalued map which is not convex-valued but which is the composition of uppersemicontinuous acyclic valued maps. To achieve our aim we shall use a fixed point theorem of Powers [5] for a class of non-acyclic (hence not convex) multivalued maps.

It seems that this is the first time that a fixed point theorem for multivalued maps without convex values is used for Ky Fan's type theorem.

Finally we give a condition very similar to Prolla [6], one which gives a multivalued map with star-shaped values.

NOTATIONS, DEFINITIONS, AND PRELIMINARY RESULTS

Let X be a Banach space; denote by $\|\cdot\|$ its norm. Let A be a subset of X and let $x \in X$; denote by

$$d(x, A) = \inf\{||x - y||, y \in A\}.$$

A subset $A \subset X$ is called approximatively compact if for every $x \in X$ and every sequence $\{x_n\} \subset A$ with $\lim_{n \to \infty} \|x - x_n\| = d(x, A)$, there exists a subsequence $\{x_{n_k}\}$ converging to an element of A [9]. Clearly a compact set is approximatively compact. However, a convex and closed subset of a uniformly convex Banach space is approximatively compact but not compact.

Let M be a convex subset of X. A map $g: M \to X$ is said to be almost affine if for all $t_1, t_2 \in M$ and for all $y \in X$, we have

$$||g(\lambda t_1 + (1 - \lambda) t_2) - y|| \le \lambda ||g(t_1) - y|| + (1 - \lambda) ||g(t_2) - y||,$$

where $\lambda \in (0, 1)$ (see [6]).

 $g: M \to X$ is said to be affine if for all $t_1, t_2 \in M$

$$g(\lambda t_1 + (1 - \lambda) t_2) = \lambda g(t_1) + (1 - \lambda) g(t_2), \quad \lambda \in (0, 1).$$

Clearly an affine map is an almost-affine map.

Let A, B be subsets of X. A multivalued map $F: A \multimap B$ with nonempty and compact values is said to be *uppersemicontinuous* (u.s.c.) in A if $\{x \in A: F(x) \subset V\}$ is open in A whenever $V \subset B$ is open.

A multivalued map $F: A \multimap B$ is said to be *compact* if F(A) is contained in a compact subset of B.

Let $g: A \to B$ be a single-valued proper map (i.e., $g^{-1}(K)$ is compact whenever K is compact).

Assume that g is onto; then we can define the multivalued map

 g^{-1} : $B \sim A$. Since g is proper, than g is closed (see [2, p. 55]). So that g^{-1} is uppersemicontinuous (see [2, p. 301]).

A subset A of X is said to be *star-shaped* if there exists $x_1 \in X$ such that, for every $x_2 \in X$, $\lambda x_1 + (1 - \lambda) x_2 \in X$, $\lambda \in [0, 1]$.

A topological space T is said to be *acyclic* if $\tilde{H}^n(T) = \{0\}$ for every $n \ge 0$, where \tilde{H}^n stands for the reduced Čech cohomology with coefficients in \mathbb{Z} .

Clearly, a convex or a star-shaped subset of X is acyclic.

A multivalued map $F: A \multimap B$ is said to be acyclic (or acyclic-valued) if F(x) is a nonempty compact and acyclic subset of B for every $x \in A$.

Let Y be a metric space. A multivalued map $F: Y \multimap Y$ is said to be admissible (see [7]) if there are maps $F_i: Y_i \multimap Y_{i+1}$, i = 0, 1, ..., n, $Y_0 = Y_{n+1} = Y$ such that:

- (1) $F = F_n \circ F_{n-1} \circ \cdots \circ F_0$;
- (2) F_i is acyclic and u.s.c. for each i = 0, 1, ..., n;
- (3) Y_i are metric spaces for each i = 0, 1, ..., n.

Notice that the composition of u.s.c. maps is an u.s.c. map. However, if f_1 is a single-valued map and F_2 is an acyclic map, then $f_1 \circ F_2$ is not in general an acyclic map. Hence the composition of acyclic maps is not an acyclic map.

We have the following theorem [5].

THEOREM A. Let M be a convex subset of a Banach space X and $F: M \multimap M$ an admissible compact map. Then F has a fixed point.

RESULTS

THEOREM. Let X be a Banach space and let M be an approximatively compact and convex subset of X. Let $f: M \to X$ be a continuous map such that f(M) is relatively compact. Let $g: M \to M$ be a continuous onto and proper map such that $g^{-1}(z)$ is an acyclic subset of M for every $z \in M$.

Then there exists $x \in M$ such that

$$||g(x) - f(x)|| = d(f(x), M).$$
 (KF)

Proof. Consider the metric projection $Q: X \rightarrow M$ defined by

$$Q(x) = \{ y \in M : ||y - x|| = d(x, M) \}.$$

We have that $Q(x) \neq \emptyset$ for every $x \in X$ and Q sends compact sets into compact sets (see [8]).

Moreover Q is u.s.c. (see [7]).

It is easy to see that, since M is convex, Q(x) is convex for every $x \in X$. From our hypotheses we obtain that $g^{-1}: M \multimap M$ is an u.s.c. acyclic-valued map. Then the map $G = g^{-1} \circ Q \circ f : M \multimap M$ is an admissible map.

To prove our result it is enough to show that G has a fixed point.

In fact, f(M) is relatively compact so that $G(M) = g^{-1}(Q(f(M)))$ is also relatively compact because the image of a compact set under an u.s.c. map (with compact values) is compact.

By Theorem A it follows that G has a fixed point and the theorem is proved.

Remark 1. An almost affine map $g: M \to M$ is an example of a map such that $g^{-1}(z)$ is an acyclic set for each $z \in M$.

In fact $g^{-1}(z)$ is a convex subset of M. To see this, let $x_1, x_2 \in g^{-1}(z)$ (i.e., $g(x_1) = g(x_2) = z$). We want to show that g(x) = z with $x = \lambda x_1 + (1 - \lambda)x_2$, $\lambda \in (0, 1)$.

From the definition we have that, for all $y \in M$,

$$||g(x) - y|| \le \lambda ||g(x_1) - y|| + (1 - \lambda)||g(x_2) - y||.$$

Choose y = z. We have $||g(x) - z|| \le 0$, hence g(x) = z.

Remark 2. From Theorem 1 and Remark 1 we obtain as a particular case the result of Sehgal and Singh [8] (see also [7]).

As a consequence of Theorem 1 we have the following Corollary.

COROLLARY 1. Let X be a Banach space and let M be a compact and convex subset of X. Let $f: M \to X$ be a continuous map and let $g: M \to M$ be a continuous onto map such that $g^{-1}(z)$ is an acyclic subset of M for every $z \in M$. Then there exists $x \in M$ such that (KF) holds.

Remark 3. If g = I we obtain the well known theorem of Ky Fan [3].

Remark 4. There exist several examples of continuous maps such that g^{-1} is an acyclic-valued map (see, e.g., [1, 4]).

Remark 5. Corollary 1 is an extension of the result of Prolla [6]. Notice that in the map paper of Prolla [6] a different multivalued map is used. This multivalued map is convex-valued, since g is almost affine.

Now we introduce a class of maps $g: M \to M$ such that $g^{-1}(z)$ is a star-shaped set, for any $z \in M$. This definition represents an extension of the notion of almost-affine maps (see $\lceil 6 \rceil$).

Let M be a convex subset of X. We say that $g: M \to M$ is star-affine if

for every $y \in X$ there exists $t_1 \in M$, t_1 depending on y, such that for every $t_2 \in M$ and for every $\lambda \in (0, 1)$ we have

$$||g(\lambda t_1 + (1-\lambda)t_2) - y|| \le \lambda ||g(t_1) - y|| + (1-\lambda)||g(t_2) - y||$$
 (**)

and

$$||g(t_1) - y|| = d(y, M).$$
 (**)

Assume that M is an approximatively compact and convex subset of X, then $g: M \to M$ onto and almost affine is star-affine. In fact, there exists $u \in M$ such that ||u - y|| = d(y, M): since g is onto, then (**) holds.

Condition (★) is trivially satisfied.

Now we want to show that $g^{-1}(z)$ is a star-shaped set for any $z \in M$. Let $z \in M$, M as above; then there exists $t_1 \in M$ such that, for every $t_2 \in M$ and $\lambda \in (0, 1)$, we have

$$||g(\lambda t_1 + (1-\lambda)t_2) - z|| \le \lambda ||g(t_1) - z|| + (1-\lambda)||g(t_2) - z||$$

and

$$||g(t_1)-z||=d(z, M)=0.$$

This implies that

$$||g(\lambda t_1 + (1-\lambda) t_2) - z|| = 0.$$

So that

$$\lambda t_1 + (1 - \lambda) t_2 \in g^{-1}(z).$$

Hence g^{-1} is star-shaped.

As a consequence of this fact and our Theorem, we obtain the following result.

COROLLARY 2. Let M be a convex and approximatively compact subset of a Banach space X. Assume that $g: M \to M$ is a continuous onto proper and star-affine map. Let $f: M \to M$ be a continuous map; then there exists $x \in M$ such that (KF) holds.

ACKNOWLEDGMENT

We thank the referee for pointing out to us that Corollary 2 is a consequence of the Theorem.

REFERENCES

- 1. F. E. Browder and C. P. Gupta, Topological degree and nonlinear mappings of analytic type in Banach spaces, *J. Math. Anal. Appl.* 26 (1969), 390–402.
- 2. K. DEIMLING, "Nonlinear Functional Analysis," Springer-Verlag, New York/Berlin, 1985.
- 3. Ky Fan, Extension of two fixed point theorems of F. E. Browder, *Math. Z.* 112 (1969), 234-240.
- 4. J. M. LASRY AND R. ROBERT, Analyse non-linéaire multivoque, in "Cahiers de Mathématiques de la Décision," Vol. 761, Univ. Paris IX, 1976.
- M. J. Powers, Leftschetz fixed points theorems for a new class of multivalued maps, *Pacific J. Math.* 42, No. 1 (1972), 211–220.
- J. B. PROLLA, Fixed point theorems for set-valued mappings and existence of best approximants, *Numer. Funct. Anal. Optim.* 5, No. 4 (1982–1983), 449–455.
- S. REICH, Approximate selections, best approximation, fixed point and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-113.
- 8. V. M. SEHGAL AND S. P. SINGH, A theorem on best approximations, Numer. Funct. Anal. Optim. 10, No. 182 (1989), 181–184.
- 9. I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspace," p. 389, Springer-Verlag, New York/Berlin, 1970.